# Loan Risk Analytics | Uncovering Patterns and Reducing Exposure

Advanced Data Analytics Capstone Kavin (Nik) Supatravanij

# Overview

| Problem Statement

| Data Processing

| Data Analysis

| Key Insights

**o5** | Limitations, Assumptions and Next Steps

Problem Statement

000

Data Processing

# **Problem Statement**

"I'm a Branch Manager at DMS Bank, a mid-sized financial institution, and we've been struggling with **increasing loan defaults**.

We have a lot of **data on our borrowers**—things like age, income, employment length, and loan details—but we **still can't easily identify who's most likely to default**.

If I can analyze this data and spot key patterns, I'll be able to **better predict which borrowers are high-risk**, help reduce defaults, and improve our lending decisions."

- Charlene Yip, Bank Manager at DMS Bank

| Problem Statement                             | Data Processing                         | Data Analysis | Key                           | r Insights 🛛 🔰 Limitati          | ons and Next Step          | ps        |
|-----------------------------------------------|-----------------------------------------|---------------|-------------------------------|----------------------------------|----------------------------|-----------|
|                                               |                                         |               | n_income 👿 person_home_owners | Lunal Luna                       | loan_grade 💌 loan_amnt 💌 l |           |
|                                               |                                         | 22            | 59000 RENT                    | 123 PERSONAL                     | D 35000                    | 16.       |
| Dataset: Credit Risk Datase                   | t 2010                                  | 21            | 9600 OWN                      |                                  | B 1000                     | 11.       |
| Dataset. Credit Nisk Datase                   | 1, 2019                                 | 25            | 9600 MORTGAGE<br>65500 RENT   | 1 MEDICAL<br>4 MEDICAL           | C 5500<br>C 35000          | 12.       |
| Source: Credit Risk Dataset                   | Kaddle                                  | 23            | 54400 RENT                    | 4 MEDICAL<br>8 MEDICAL           | C 35000                    | 15.       |
|                                               |                                         | 24            | 9900 OWN                      |                                  | A 2500                     | 7.        |
| Details: 32,581 rows, 12 field                | ds                                      | 26            | 77100 RENT                    | 8 EDUCATION                      | B 35000                    | 12.       |
| 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       |                                         | 24            | 78956 RENT                    |                                  | B 35000                    | 11.       |
|                                               |                                         | 24            | 83000 RENT                    | 8 PERSONAL                       | A 35000                    | 8         |
|                                               |                                         | 21            | 10000 OWN                     | 6 VENTURE                        | D 1600                     | 14.       |
| This dataset contains inform                  | lation on:                              | 22            | 85000 RENT                    | 6 VENTURE                        | B 35000                    | 10.       |
|                                               | · · · · / A · · · · · · · · · · · · · · | 21            | 10000 OWN                     | 2 HOMEIMPROVEMENT                |                            | 8.        |
| A) Borrower demograph                         | nics (Age, Income, etc.)                | 23            | 95000 RENT                    | 2 VENTURE                        | A 35000                    | 7         |
| D   a constant with ut a c (instance)         | t interest rate aleferrite ate )        | 26            | 108160 RENT                   |                                  | E 35000                    | 18.       |
| <ul> <li>B) Loan attributes (inten</li> </ul> | nt, interest rate, defaults, etc.)      | 23            | 115000 RENT                   | 2 EDUCATION                      | A 35000                    | 7         |
|                                               |                                         | 23            | 500000 MORTGAGE               | 7 DEBTCONSOLIDATION              |                            | 10.       |
|                                               |                                         | 23            | 120000 RENT                   | 0 EDUCATION                      | A 35000                    |           |
|                                               |                                         | 23            | 92111 RENT<br>113000 RENT     | 7 MEDICAL<br>8 DEBTCONSOLIDATION | F 35000<br>D 35000         | 20.       |
| Feature Name                                  | Description                             | 23            | 10800 MORTGAGE                |                                  | B 1750                     | 10.       |
|                                               |                                         | 25            | 162500 RENT                   | 2 VENTURE                        | A 35000                    | 7.        |
| person_age                                    | Age                                     | 25            | 137000 RENT                   |                                  | E 34800                    | 16.       |
|                                               |                                         | 22            | 65000 RENT                    | 4 EDUCATION                      | D 34000                    | 17.       |
| person income                                 | Annual Income                           | 24            | 10980 OWN                     | 0 PERSONAL                       | A 1500                     | 7.        |
|                                               |                                         | 22            | 80000 RENT                    | 3 PERSONAL                       | D 33950                    | 14.       |
| person_home_ownership                         | Home ownership                          | 24            | 67746 RENT                    | 8 HOMEIMPROVEMENT                | C 33000                    | 12.       |
|                                               |                                         | 21            | 11000 MORTGAGE                | 3 VENTURE                        | E 4575                     | 17.       |
| person_emp_length                             | Employment length (in years)            | 23            | 11000 OWN                     |                                  | A 1400                     | 9.        |
|                                               |                                         | 24            | 65000 RENT                    |                                  |                            | 9.        |
| loan intent                                   | Loan intent                             | 21            | 11389 OTHER                   |                                  | C 4000                     | 12.       |
|                                               |                                         | 21            | 11520 OWN                     | 5 MEDICAL                        | B 2000                     | 11.       |
| loan_grade                                    | Loan grade                              | 25            | 120000 RENT<br>95000 RENT     | 2 VENTURE<br>7 HOMEIMPROVEMENT   | A 32000<br>C 31050         | 6.<br>14. |
|                                               |                                         | 26            | 306000 RENT                   | 2 DEBTCONSOLIDATION              |                            | 14.       |
| loan amnt                                     | Loan amount                             | 26            | 300000 MORTGAGE               | 10 MEDICAL                       | C 7800                     | 13.       |
|                                               |                                         | 20            | 12000 OWN                     |                                  | A 2500                     | 7.        |
| loan_int_rate                                 | Interest rate                           | 22            | 48000 RENT                    | 1 EDUCATION                      | E 30000                    | 18.       |
|                                               |                                         | 24            | 64000 RENT                    | 8 DEBTCONSOLIDATION              | D 30000                    | 14.       |
| loan_status Loan statut default)              | Loan status (0 is non default 1 is      | 25            | 75000 RENT                    | 4 HOMEIMPROVEMENT                | D 30000                    | 16.       |
|                                               | default)                                | 23            | 71500 RENT                    | 3 DEBTCONSOLIDATION              | D 30000                    |           |
|                                               | Percent income                          | 26            | 62050 RENT                    | 6 MEDICAL                        | E 30000                    | 17.       |
|                                               |                                         | 24            | 12000 OWN                     | 4 VENTURE                        | B 2500                     | 12.       |
|                                               |                                         | 26            | 300000 MORTGAGE               | 10 VENTURE                       | A 20000                    | 7.        |
| cb_person_default_on_file                     | Historical default                      | 23            | 300000 OWN                    |                                  | F 24250                    | 19.       |
|                                               |                                         | 26            | 300000 OWN                    | 9 HOMEIMPROVEMENT                |                            | 10.       |
| cb preson cred hist length                    | Credit history length                   | 26            | 300000 MORTGAGE               |                                  | D 25000                    | 15.       |
|                                               |                                         | 25            | 300000 MORTGAGE               |                                  | E 18000                    | 16.       |
|                                               |                                         | 26            | 80690 RENT                    | 8 PERSONAL                       | A 30000<br>B 30000         | 7.        |
|                                               |                                         | 22            | 66300 RENT                    | 4 MEDICAL                        |                            | 12.       |

# **Dataset Preparation**

# Excel:

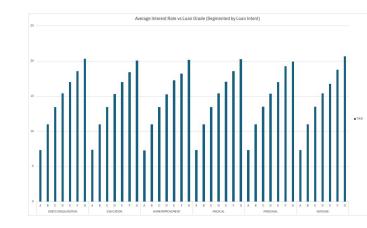
- 1. **314 duplicates:** since there is no unique ID in the raw data, it is uncertain whether these represent distinct data points and so these rows were kept
- 2. Columns renamed to improve readability

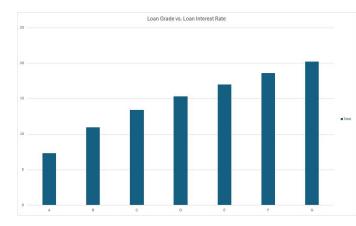
## 3. Handle logical errors:

- a. Remove rows where Years Employed > Person Age (2 rows deleted)
- b. Remove rows where Credit History Length > Age (No rows found)

# 4. Missing data:

- a. ~10% of rows have NULL Loan Interest rates: these were imputed with mean values of interest rate, segmented by loan grade. A PivotTable analysis showed that loan intent had no significant impact on average interest rates (see charts on the right), so segmentation was only done by loan grade. The missing values were filled using the IF/ISBLANK/INDEX/MATCH functions.
- b. ~3% of rows have NULL Years Employed: these were dropped as dataset is large and 3% would not represent a significant impact on data.





| Problem Statement Data Processing Data Analysis                                                                                                                              | Key Insights | Limitations and Next Steps |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|
|                                                                                                                                                                              | Age          | Count of ID                |
| Dataset Preparation                                                                                                                                                          | 123          | 2                          |
| Tableau:                                                                                                                                                                     | 144          | 3                          |
| <ul> <li>Outliers:</li> <li>a. Age: using a box plot, we can see 5 rows where customer age &gt; 100.</li> </ul>                                                              | Grand Total  | 5                          |
| Considering the oldest person in the world was 122 years old ( <u>List of</u> <u>the verified oldest people - Wikipedia</u> ), it is highly likely these are errors          | Age Range    | Income                     |
| and would skew the data, so the decision was made to delete these<br>rows from the dataset on Excel<br>b. There was an outlier for Income (Income = 6,000,000), however this | 140          | 6M •                       |
| was for one of the age outlier customers above, which was deleted<br>along with the record for that outlier above. It is likely this particular                              | 120          | 5M                         |
| record was an error.                                                                                                                                                         | 100          | 4M                         |
| <ul><li>Excel:</li><li>2. Added ID columns as no index in cleaned dataset</li></ul>                                                                                          | 90 BG        | a 3M                       |
|                                                                                                                                                                              | 60           | 2M                         |
| $\rightarrow$ Final workable data: 31,679 rows (of 32,581 rows, 97.2% retained)                                                                                              | 40           | 1M                         |
|                                                                                                                                                                              | 20           | 0.04                       |
|                                                                                                                                                                              | 0            | 0M                         |



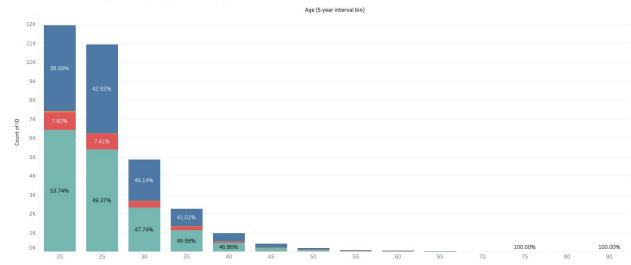


Demographic Breakdown by Home Ownership Status

- Most customers either rent (~50% of total) or mortgage (~41% of total) their properties, with only a small percentage with other/full ownership status
- This **ratio remains relatively unchanged** as customers get older
- Customers with higher Loan
   Grades (A) tend to own
   mortgages rather than rent their
   properties, while this trend
   reverses as the loan grade
   decreases.



Demo: Home Ownership Status by Age (Stacked Bar)



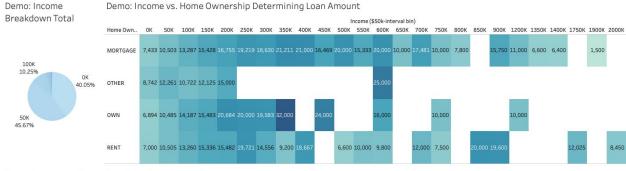
Home Own. A D E E. G MORTGAGE 35.13% 33.53% 35.50% 40.68% 48,44% 0.56% 0.85% OTHER 0.25% 0.33% 0.27% 0.84% OWN 8.02% 7.46% 7.52% 7.62% 5.67% 5.51% 7.81% RENT 58.28% 57.98% 52 97% 43.75%

# Problem Statement Data Processing Data Analysis Key Insights Limitations and Next Steps

# Understanding the customers

Demographic Breakdown by Income

- Majority of customers (~85%)
   make less than \$100k in income
- Cross-tabulating Income vs. Age and Income vs. Home Ownership, we see that the Loan Amount does not vary significantly by whether the customer rents/owns a mortgage or how old they are
- Income seems to play the biggest factor in determining the loan amount, more than Home Ownership Status or even Age



### Demo: Income vs. Age Determining Loan Amount



### Problem Statement

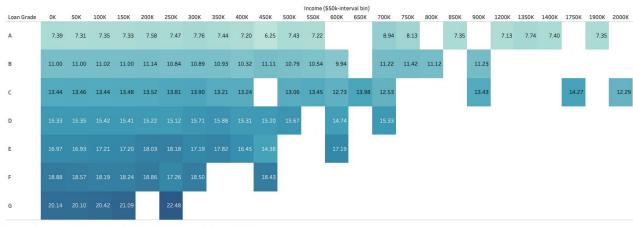
Data Analysis

Demo: Income vs Loan Grade Determining Loan Interest Rate

# Understanding the customers

### Demographic Breakdown by Income

- Interestingly, loan interest rates do not seem to be affected by income level
- Those with higher incomes do not necessarily enjoy a lower interest rate, and vice versa
- The purpose of the loan also does not appear to play a factor in the loan interest rate
- Overall, loan grade is the biggest factor in determining loan interest rate, all other factors being equal



Demo: Income vs Loan Intent Determining Loan Interest Rate



# Problem Statement Data Processing Data Analysis Key Insights Limitations and Next Steps Understanding loan defaults Current Loan Grade Imitations and Next Steps Imitations and Next Steps Breakdown by Loan Grade A B C D E F G • Loan grade, loan defaults, and Default Default Default Default Default

11.00

12

8 10

6

4

2

7.35

A

ġ,

- Loan grade, loan defaults, and loan interest rates are all naturally correlated with each other
- If a person is awarded a high loan grade (A or B for example), it typically means they are less likely to default, and are given a lower interest rate as they are less risky to lend to

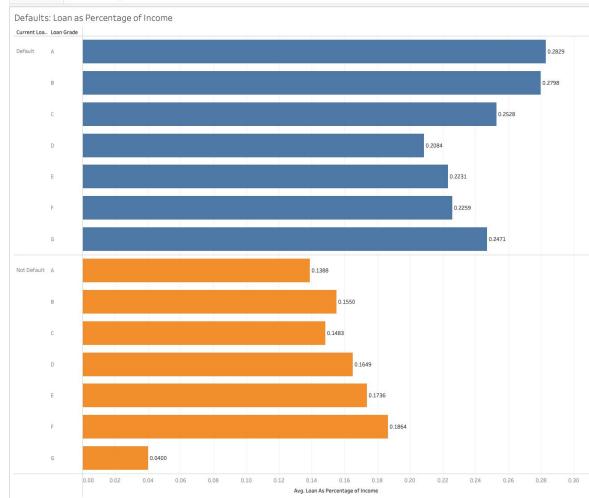
 Key insight: we can use loan grade as a proxy for default risk - so what behaviours/profiles determine what loan grade they get? This will help us identify high-risk profiles in the future.



# Problem Statement Data Processing Data Analysis Key Insights Limitations and Next Steps Understanding loan defaults Defaults: Loan as Percentage of Income.

# Breakdown by Loan as Percentage of Income

- People who take a loan that is a larger percentage of their income are more likely to default on their loan
- Generally those that default on their loans take a loan that is more than 20% of their income
- This is true across all loan grades





### Problem Statement

Key Insights

# **Understanding loan defaults**

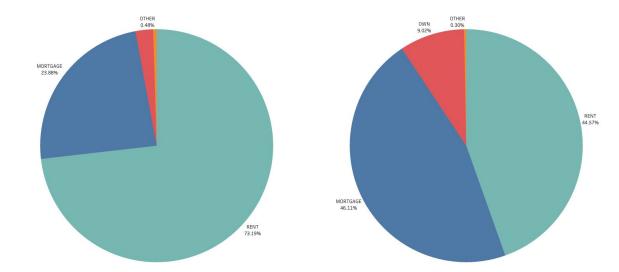
# Breakdown by Historical Defaults

- While those with higher grade loans still default (although at lower rates than those with lower grades),
   those who get a loan grade A or B
   have never defaulted
- This means that historical default is a key indicator for identifying low-risk loans
- This is true across all types of loan intent as well



| Problem Statement    | Data Process   | sing                 | Data Analysis                 | Key Insights                              | Limitations and Next Steps |
|----------------------|----------------|----------------------|-------------------------------|-------------------------------------------|----------------------------|
| Understanding loa    | n defaults     | Defaults: Home Owner | rship Status Total<br>Default | Current Loan Default Status (Categorical) | Not Default                |
| Breakdown by Home Ow | nership Status |                      |                               |                                           |                            |

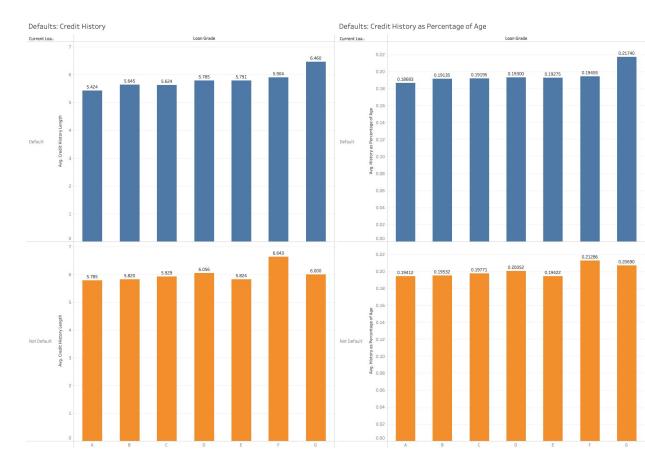
- Customers that have a mortgage appear less likely to default on their loan than those that rent
- This may be because individuals with a mortgage have already been approved for a housing loan, making them more reliable from a credit standpoint and, therefore, less likely to default on additional loans they take on
- It is noted that correlation does not equate to causation, so this observation would require further analysis in the future



# **Understanding loan defaults**

**Breakdown by Credit History** 

- Surprisingly, credit history length does not seem to be a predictor of default risk, either absolute history length in years, or as percentage of customer age
- This may be due to the data within the dataset, however **across all loan grades the average credit history is ~5-6 years or ~20% of customer age**
- Both default and non-default customers share these values, signalling that credit history length does not vary between these two groups





Data Processing

Data Analysis

# Key Insights

# What profiles are usually low-risk borrowers?

"Sarah is an example of a low-risk borrower: she is borrowing only around **15% of her total income, and has never defaulted on any of her loans before.** 

# She also has a mortgage, which she services every month.

Although she makes an average salary, and has only been with the bank for ~2 years, she would be considered a good borrower and not likely to default.

The recommendation would be to give her a loan, and probably with a lower interest rate to keep her business with us"

| Loan as % of income   | Low % = ideally < 18% of total income  |
|-----------------------|----------------------------------------|
| Historical default    | Have not had any historical defaults   |
| Home ownership status | Ideally have a mortgage, but rental or |
|                       | otherwise is OK                        |
| Income level          | Not relevant                           |
| Credit history length | Not relevant                           |
| Age                   | Not relevant                           |
| Loan intent           | Not relevant                           |

# **Key Insights**

What profiles are usually high-risk borrowers?

"Alvin is an example of a high-risk borrower: he is **borrowing quite** a lot at 27% of his total income, even though he makes an above average salary.

He is also a renter, and it is unclear whether he applied for a mortgage previously. Perhaps **most importantly is that he has had** a history of defaults: he has defaulted a few times on two other loans he has with the bank.

If we proceed to give him a loan, it is highly likely he will have a low grade loan of C or lower, with high interest rates because of his default risk."

| Loan as % of income   | High % = above 18% of total income |
|-----------------------|------------------------------------|
| Historical default    | May have had historical defaults   |
| Home ownership status | Most likely a renter               |
| Income level          | Not relevant                       |
| Credit history length | Not relevant                       |
| Age                   | Not relevant                       |
| Loan intent           | Not relevant                       |



# **Key Recommendations**

How can the loan process be improved?

- 1. **Collect more demographic information on customers**: currently in the dataset only Home Ownership Status appears to play a role in predicting low/high risk borrowers. Adding more data collection points could increase accuracy of this identification process.
- 2. **Understand more about historical defaults**: did the customer default more than once? What was the loan amount they defaulted on? This could help to segment the customers further.
- 3. **Target customers who have a mortgage**: those who have been approved for a mortgage are likely to have a good credit record already, and could be low-risk borrowers for other banking products.
- 4. **Offer micro-loans as a separate product**: since the median income is \$60,000 amongst all ages, micro-loans of 5% (i.e. up to \$3000) could be offered as a relatively low-risk product for all customers, regardless of whether they have a credit history with the bank.



# Limitations, assumptions and next steps

# Limitations

- 1. The dataset shows a strong bias towards younger borrowers, who tend to have shorter credit histories.
- 2. A majority of borrowers, across all age groups, fall within the low to middle-income range (below \$150K USD annually).
- 3. Lack of comprehensive data on other key demographic factors (such as ethnicity, geographic location, gender, and occupation) as well as loan behaviours (repayment frequency, historical loan amounts, etc.)

# Assumptions

- 4. Loan grade has not yet, or will not, account for loan default status. Borrowers who have defaulted on their loans have not experienced a downgrade in their loan grade.
- 5. Borrowers in the dataset are assumed to have consistent financial behavior, but fluctuations in income or unexpected expenses are not accounted for

# **Next Steps**

6. Collect more data on key demographic factors and more granular loan performance data



Tableau Storyboard Visuals

Loan Risk Analytics | Uncovering Patterns and Reducing Exposure